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Prompt Nuclear EMP and Synchrotron Radiation:
A Resolution of Two Approaches

Robert A. Roussel-Dupré

Abstract—The geomagnetic component of nuclear EMP gen-
erated by the prompt (tmax ∼ 2 µs) γ-ray, neutron, and X-ray
radiation from a nuclear explosion has been the subject of intense
scrutiny for over 40 years. Recent work by certain members of
the scientific community has suggested that a discrepancy exists
in the calculations/derivation of nuclear EMP between treatments
based on Maxwell’s equations and the high-frequency approxima-
tion and those derived from a summation over particles emitting
synchrotron radiation. In principle, the two approaches should be
identical simply because the well-known Liénard–Wiechert poten-
tials for accelerating particles are derived from Maxwell’s equa-
tions. In this paper, we start from the Liénard–Wiechert potentials
and derive an expression for nuclear EMP that is identical to pre-
vious work based on a solution of Maxwell’s equations. Thus, the
putative discrepancy between the two approaches is resolved and
Maxwell’s equations in this regard are again vindicated.

Index Terms—EMP radiation effects, Maxwell equations, nu-
clear explosions, synchrotron radiation.

I. INTRODUCTION

OUR BASIC understanding of the physics of the electro-
magnetic pulse (EMP) generated by a nuclear explosion

underwent substantial evolution throughout the latter part of the
1950s and finally reached maturity in the early 1960s with the
initial publications of Karzas and Latter [1]–[4] and the lec-
ture notes of Longmire (cf. [5]–[7]). The essential features of
EMP generation can be summarized as follows. The prompt
radiation (X-rays, γ-rays, and neutrons) from a nuclear explo-
sion ionizes the air and produces a temporally changing current
system that launches an EMP. The current system consists of
two parts: 1) energetic electrons (∼1-MeV energy) produced by
Compton scattering of the γ-rays and moving radially outward
and 2) secondary electrons that are produced by both X-rays
(photoelectric effect) and ionization of the air by the Compton
electrons. At low altitudes, X-rays are easily absorbed in air and
are confined to a small region (a few meters in size at sea-level
air density) around the burst point and contribute little to the
currents that generate EMP. For high-altitude bursts (>50 km),
the X-rays become important both in producing a current system
that contributes to the EMP and in creating background ioniza-
tion over a large range that can absorb some of the EMP. In
contrast, the γ-rays produce significant ionization over a spher-
ical region several hundred meters to kilometers in radius at
sea level. Neutrons undergo inelastic scattering and capture in
air and produce additional γ-rays (at later times) that, in turn,
generate Compton electrons. If asymmetries exist in the driving
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currents, then a pulse is recorded by a remote sensor. Asymme-
tries in the Compton current (energetic electrons) can be caused
by either: 1) differential absorption of γ-rays resulting from the
presence of the groundor ground arymmentry EMP (GAEMP),
the weapon design, or the atmospheric density gradient or 2) the
turning of the Compton electrons in the earth’s magnetic field
or geomagnetic EMP (GEMP). It is the latter form of EMP on
which we focus in this paper. We will also limit our analysis to
early times (∼2 µs), the γ-ray source term, and to low-altitude
bursts (<25 km), but the basic conclusion will apply at high
altitudes as well.

The generation of a coherent electromagnetic pulse by the
turning of Compton/relativistic electrons in a magnetic field gen-
erally falls under the rubric of synchrotron radiation. Thus, the
radiation field can be computed by using the Liénard–Wiechert
potentials and by summing the corresponding radiated, vector
electric field over the particles. Because the latter potentials
are in turn derivable from Maxwell’s equations it is also pos-
sible to obtain the radiation field directly from these equations
and an appropriate prescription for the Compton current. We
show below that the two techniques are identical under the same
assumptions.

A. Existing Formulation of Nuclear EMP

The following derivation conforms to the basic treatments of
nuclear GEMP presented in previous papers [1]–[7]. The fluid
approach used here differs only slightly from previous work and
is used only to simplify the problem and for clarity.

The relevant fluid equations for primary electrons (Compton
electrons) and secondary electrons (produced by primaries) can
be written

∂np

∂t
= −∇ · npvp + Fγ /λc − νE np (1)

∂S
∂t

= −∇ · Svp − enp

(
E +

vp × B
c

)
− νS

+ Fγ γpmevb/λc (2)

∂ns

∂t
= −∇ · nsvs − α ns + νins +

( εp

34

)
νE np (3)

where np is the primary electron density, εp is the primary
electron energy in electronvolts (eV), S = meγpnpvp is the mo-
mentum density of primary electrons moving with a mean ve-
locity vp , γp is the Lorentz factor, Fγ is the flux at a radius r
and time t of γ-rays produced by the nuclear explosion, λc is
the Compton attenuation length for γ-rays, νE is the normal-
ized energy loss rate (in s−1) for primary electrons, ν is the
total momentum loss rate which can be written as the sum of
energy loss and scattering rates for primary electrons, E is the
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self-consistent electric field, B is the sum of the geomagnetic
field and self-consistent magnetic field, vb is the mean velocity
with which the primary electrons are born, ns is the density of
secondary electrons, vs is the mean drift velocity of secondary
electrons, α is the sum of the two-body dissociative plus three-
body attachment rates in air, and νi is the ionization rate for
secondary electrons. The energy loss rate used in (1) actually
corresponds to a particle loss rate in that the population of en-
ergetic particles is limited by definition to a specified energy
range. Particles that decelerate past the lower energy boundary
are lost to the population of Compton electrons at the normal-
ized rate defined by νE . We note that the quantities vs , α, and
νi are functions of the electric field and can be obtained from
swarm data assuming that secondary electron collisions are suf-
ficiently rapid as to bring their distribution function into an
equilibrium defined by the electric field. The latter condition is
generally met at low altitudes. For high-altitude bursts, inertial
effects come into play in the source region and the secondary
electron momentum equation must be solved along with (1)–(3).
The last term in (3) represents the production rate of secondary
electrons as a result of ionization by the primary electrons. The
factor ((εp)/(34)) accounts for the fact that a primary electron
expends approximately 34 eV for every ion pair it produces.

The γ-ray flux produced by a nuclear weapon can be written

Fγ =
ηY

ε

e−r/λc

4πr2
Sγ (t − r/c) (4)

where η is the γ-ray efficiency, Y is the total yield of the weapon,
ε is the mean energy of the γ-rays, and Sγ is the normalized
rate (an integration over time yields one) of production of γ-
rays in units of quanta per second. We note that the form of
(4) does not apply near the origin of the burst where Fγ must
ultimately go to zero. In this formulation, we limit ourselves to
distances large compared to the weapon dimensions. The total
current density associated with the motion of the primary and
secondary electrons can be written

j = jp + σE

where jp is the primary electron current density and σ =
nse

2/meν, where me is the rest mass of the electron, −e is
its charge, and ν is the secondary electron scattering rate is the
conductivity produced by the secondary electrons. An equation
for the primary electron current is obtained directly from (2) to
yield
∂jp
∂t

= −jp∇ · vp − jp
γp

vp · ∇γp − jp
γp

∂γp

∂t
− vp · ∇jp

+
e2np

γpme

(
E +

vp × B
c

)
− νjp − Fγ evb/λc (5)

where jp = −npevp . An equation for the mean velocity of
the primary electrons is obtained by combining (1) and (2)

∂vp

∂t
= −vp

γp
vp · ∇γp − vp

γp

∂γp

∂t
− vp · ∇vp

− e

γpme

(
E +

vp × B
c

)
− νsvp + Fγ (vb − vp)/npλc (6)

where νs is the primary electron scattering rate.

In order to simplify the problem, we now transform (5) into
the frame moving at the speed of light in the radial direction
with the γ-rays. We introduce the variables τ = (t − r/c) and
r′ = r. We also employ the high-frequency approximation
which assumes that the time for production of the γ-rays
multiplied by the speed of light defines a scale length (Compton
shell size) that is much shorter than the Compton attenuation
length λc for low-altitude bursts and shorter than the atmo-
spheric scale height for high-altitude bursts (c.f. [4] and [8]).
Typically, the Compton shell size is <3 m, while the Compton
attenuation length at sea level is λc∼300 m. Under this
approximation ∣∣∣∣ (1 − βpr)

c

∂

∂τ

∣∣∣∣ � |∇′| (7)

where βpr is the primary electron radial velocity divided by the
speed of light. We note that in the moving frame the production
time of primary electrons is shortened by the factor (1 − βpr) so
that the appearance of this factor in front of the τ derivative does
not change the requirement for the validity of (7) as stated above.

The transformation of (5) yields

(1 − βpr)
1
γp

∂γp jp
∂τ

− ∂βpr

∂τ
jp = −νjp − Fγ evb/λc

+
e2np

γpme

(
E +

vp × B
c

)
(8)

To obtain a solution of (8), we first make the assumptions
that vb = v0r̂, |vp | = v0, and v0 (and, therefore, γp ) is inde-
pendent of τ . These assumptions are valid provided that the
primary electrons are produced with a mean velocity mainly in
the radial direction (consistent with Compton scattering) and
that the production rate of particles is much faster than any
of the transport processes (consistent with the high-frequency
approximation). We must also assume that the acceleration of
particles due to the electric field is small. The maximum field is
the radial component that saturates due to the canceling effect of
the secondary electron conductivity. According to Longmire [9]
the maximum field (independent of yield but proportional to the
production rate of γ-rays plus the three-body attachment rate of
secondary electrons) is 60 kV/m at sea level and 40 kV/m at high
altitudes for a production rate of 2× 108 s−1. These fields are
sufficiently small to neglect their effect on the speed v0 of the
primary electrons relative to the rate at which particles are born
with speed v0. The net result of these approximations is that the
average energy of the Compton electrons remains constant for
any r and τ and equal to the energy at which the particles are
born. The particle population however is still reduced by energy
loss due to collisions albeit at a rate that is small compared to
the production rate. Thus, (8) now reduces to

(1 − βpr)
∂jp
∂τ

= −νjp − Fγ ev0r̂/λc − Ωjp × B̂ (9)

where B̂ is the vector direction of the magnetic field and
Ω = (eB)/(γpmec). For simplicity, we adopt the description
of collisions used by Karzas and Latter [4], namely that the
primary electrons are effectively collisionless throughout their
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range and then are abruptly lost. This formulation allows us to
drop the (νjp) term in obtaining a solution and then reincor-
porate it as an integral limit in the final solution. Solving (8)
under these approximations for the various vector components
of the primary current and taking the magnetic field to be in the
z-direction (without loss of generality) yields

jpr(r, τ) =
−ev0

λc

∫ τ ′

0

dτ ′′

(1 − βpr)
Fγ (r, τ − τ ′′)

× (cos2 θ + sin2 θ cos Ω′τ ′′) (10)

jpθ (r, τ) =
−ev0

λc

∫ τ ′

0

dτ ′′

(1 − βpr)
Fγ (r, τ − τ ′′)

· cos θ sin θ(cos Ω′τ ′′ − 1) (11)

jpφ(r, τ) =
−ev0

λc

∫ τ ′

0

dτ ′′

(1 − βpr)
Fγ (r, τ − τ ′′)

· sin θ sin Ω′τ ′′ (12)

where Ω′ = Ω/(1 − βpr). We have dropped the prime on the
r-variable, τ ′ = (1 − βpr)/ν, and θ is the polar angle between
the magnetic field and the radial direction. These results are
identical to (14)–(16) of Karzas and Latter [4] in the limit that
Ω′τ ′ � 1 which is accurate at low altitudes. At high altitudes,
the results are also identical along the rise of the γ-pulse. At
later times, the two results differ in the argument of Fγ .

An expression for the secondary electron density can be ob-
tained from (1) and (3). After transforming to the γ-frame, we
find

ns(r, τ) =
νE

λc

( εp

34

) ∫ τ

0

dτ ′e(νi −α)(τ−τ ′)

·
∫ τ ′

0

dτ ′′

(1 − βpr)
Fγ (τ ′′, r)e−νE (τ ′−τ ′′)/(1−βpr). (13)

This result agrees with (13) of Karzas and Latter [4] in the
same limits discussed previously for the primary current. Note
that we have incorporated the effects of secondary ionization
and attachment in our solution. Price [8] modified the results of
Karzas and Latter [4] to include attachment.

In the high-frequency approximation, the appropriate equa-
tions for the electric field components are derived in both Karzas
and Latter [4] and, more recently, in Price [8]. The relevant equa-
tions are written

∂Er

∂τ
= −4π(jpr + σEr ) (14)

1
r

∂rEθ

∂r
= −2π

c
(jpθ + σEθ ) (15)

1
r

∂rEφ

∂r
= −2π

c
(jpφ + σEφ). (16)

The radial component of the electric field Er represents a
quasi-electrostatic field formed by the separation in charge be-
tween the primary electrons and the ions produced by primary
ionization and cancelled in part by the secondary current. The

solution for the radiated fields, Eθ and Eφ , can be written

Eθ,φ(r, τ) = −2π

rc

∫ r

0

dr′r′jpθ,pφ(r′,τ)e−
2π
c

∫ r

r ′
dr ′′σ(r ′′,τ )

.

(17)

Equations (10)–(13) together with (17) form a complete set
and provide a general expression for the electric field radiated
by a nuclear explosion in the high-frequency approximation.
We will derive the same expression below starting from the
Liénard–Wiechert potentials.

II. STARTING FROM THE LIÉNARD–WIECHERT POTENTIALS

The Liénard–Wiechert potentials for a particle in motion are
derivable from Maxwell’s equations and can be written [10]

Φ(x, t) =
[

e

(1 − β · n)R

]
ret

A(x, t) =
[

eβ

(1 − β · n)R

]
ret

(18)

where the subscript “ret” means that the quantity in the square
brackets is to be evaluated at the retarded time, β is the particle
velocity divided by the speed of light, n is the unit vector from
the particle to the observer, and R is the distance from the
particle to the observer. From these potentials, it is possible to
derive the following expressions for the corresponding electric
and magnetic fields:

E(x, t) = e

[
(n − β)

γ2(1 − β · n)3R2

]
ret

+
e

c




n ×
{

(n − β) × β̇
Ý

}

(1 − β · n)3R




ret

Brad = [n × E]ret. (19)

The first term in the expression for E(x, t) corresponds to
a quasi-electrostatic field, while the second term represents the

radiation produced by an accelerating charge with β̇
Ý

equal
to the particle acceleration. Synchrotron radiation for a single
particle is derived from this term and is the focus of our analysis.
Brad represents the radiated magnetic field.

We note that the Liénard–Wiechert potentials only address
the radiation produced by accelerating charges. The creation of
charge in a way that results in a changing current also yields
radiation and this effect must be included separately provided
that a change in this current is not produced by the magnetic field
in which case the Liénard–Wiechert potentials do include this
particular component. In the context of nuclear EMP, the γ-rays
produce a changing Compton current that in principle yields
net radiation provided that an asymmetry in the current system
exists. We will show below that the geomagnetic field introduces
such an asymmetry and that there is net radiation produced as
a result. This radiation is in addition to that produced by the
acceleration of the individual electrons.

In order to proceed, we first adopt the collision model used
by Karzas and Latter [4], i.e., a particle is collisionless up to the
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collision time and then stops abruptly. With this approximation,
we have

β̇
Ý

=
eβ × B
γmc

(20)

where B is the self-consistent magnetic field plus the externally
applied field (e.g., geomagnetic field). The contribution to the
radiation field from frictional deceleration (Bremsstrahlung ra-
diation) is incoherent and is therefore small compared to the
synchrotron term after summing over the particles. To remain
consistent with the assumptions (and our collision model) made
in the previous section, we neglect this effect and we also omit
the acceleration of the Compton electrons by the self-consistent
electric field. The radiation produced by acceleration of the
secondary electrons by the electric field is also omitted from
the Liénard–Wiechert potentials. Instead the secondary electron
radiation is treated below as resulting from a macroscopic con-
duction current (proportional to the electric field) that in effect
“absorbs” the synchrotron radiation produced by the Compton
electrons. In a more rigorous particle treatment, we would have
to include this effect by means of a secondary electron accel-
eration term proportional to the electric field and incorporated
in the Liénard–Wiechert potentials. Our contention is that the
radiation derived in this way and summed over all secondary
electrons would serve to cancel in part that produced directly by
synchrotron radiation and would appear therefore exactly as an
absorption term in the final expression for the net radiation. The
proof will be left for future work but the analysis performed here
for synchrotron radiation provides the methodology for treating
the secondary electrons and lends support to our contention in
this regard.

If we make the further assumption that particles are moving
primarily in the radial direction (justified a posteriori) then
the expression for the radiated component of the electric field
becomes

E(x, t) =
e

c


 r̂ × (r̂ × β̇

Ý
)

(1 − β)2R




ret

. (21)

Note that the retarded frame now corresponds with the γ-
frame. Substituting the solution to (20) into (21) and assuming
that the magnetic field is in the z-direction (again, without loss
of generality) we have

E(x, τ − τ ′) =
e

c




βΩ′sinθ
(1−β)R

·




cos Ω′(τ − τ ′)φ̂
+

cos θ sin Ω′(τ − τ ′)θ̂




·
{

H
(
τ ′ − τ + (1−β)

νE

)
− H(τ ′ − τ)

}




ret

(22)

where Ω′ = eB/γ mc (1 − β) and τ − τ ′ is a time interval in the
γ -frame described in the previous section. To be consistent with
our adopted collision model, this time interval cannot exceed a
value equal to (1 − β)/νE , where νE is the energy loss rate.
We have imposed this condition mathematically by means of
the Heaviside functions H(τ).

Fig. 1. Geometry for EMP production. The light blue color represents the
γ-shell between τ and τ ′ in the γ-frame or r and r′ in the fixed frame. The
Compton electrons with density np (r′, τ − τ ′) on the spherical cap (in three
dimensions) centered on the observer and with radius R radiate an EMP that
reaches the observer at time τ . The spherical cap is swept forward by the motion
of the γ-shell over a distance dr′ as shown in the picture. As the shell moves
out, radiation piles up in the grey volume element provided absorption by the
conducting gas is sufficiently small. This condition is generally satisfied at radial
distances greater than a critical value rc equal to several γ-attenuation lengths
or approximately 1 km for a low-altitude burst. The contribution of the Compton
electrons must be summed or integrated from rc to the observer and over the
lifetime of the Compton electrons to obtain the total EMP.

The electric field E given by (22) represents the radiated field
from a single particle moving primarily in the radial direction
and accelerated (without change of energy) by the total mag-
netic field B. To obtain the net radiation from an ensemble of
particles, we must sum over the total number of particles that
emit coherently within an appropriate volume element. In gen-
eral, the total number of particles dN in a volume dV ′ can be
written very simply as

dN = np(r′, τ ′)dV ′ (23)

where np is the density of primary electrons at τ ′ and r′. The
problem now reduces to defining the correct volume over which
to count the particles that contribute to the radiation that arrives
at the observer at time τ (measured relative to the start of the
γ-radiation from the burst).

The appropriate geometry is illustrated in Fig. 1. This figure
shows two spherical surfaces of constant τ that, at a given time
t in the fixed frame, coincide with the radial surfaces, r and r′,
with ∆r = r′ − r = c(τ − τ ′). In general, the τ surfaces move
outward at the speed of light and cross surfaces of increasing
radius as a function of the fixed-frame time coordinate t. Note
also that τ coincides with a particular time into the γ-ray pulse
[function Sγ in (4)] produced by the nuclear burst and that its
value decreases with radial distance at any given time t. Thus,
for example, τ ′ is less than τ in Fig. 1.

In order to arrive simultaneously at the observer, the radiation
produced in the source region must originate along the spherical
surface centered at the observer and of radius R. The Compton
electrons that lie on the surface (in the source region) outline a
spherical cap that is tangent to the surface τ and that crosses the
surface τ ′. The spherical cap moves forward in time along with
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the γ-pulse from the burst and radiates. The angle χ shown in
Fig. 1 is measured from the line-of-sight line segment to the line
that connects the location of the observer to the point where the
τ ′ surface crosses the spherical cap. The surface area dA of the
spherical cap can be written in terms of χ and R as

dA = πR2χ2 (24)

where R is the distance to the observer as before and where
we have assumed χ � 1. Given the radial distance ∆r = c(τ −
τ ′) = cdτ ′ and assuming that (∆r/r′) � 1 (justified below),
the angle χ can be approximated as χ ≈

√
(2r′∆r/R2) and the

volume element dV ′ becomes

dV ′ = 2πr′∆rdr′ = 2πr′cdτ ′dr′ (25)

where we have taken into account the fact that the spherical
cap is swept forward a radial distance dr′ by the motion of the
γ-shell as noted previously.

The maximum value of ∆r,∆rmax = c(1−β)/(νE ), is de-
fined by our model for particle collisions and the fact that our
result (22) for the radiated field from one particle is limited to
a time interval equal to the lifetime of the Compton electron.
Only those particles within the corresponding range of τ values,
τ − τ ′ ≤ (1−β)/(νE ) can emit radiation coherently and with
the relative phase defined in (22). Those particles that lie outside
of this τ interval possess retarded times that are larger than the
lifetime of the particle and therefore their trajectories are such
that they die before they can contribute to the radiation. An-
other way to view this result is to realize that the lifetime of the
particles defines a correlation time (in the γ-pulse frame) over
which the memory of particles produced during their lifetime
results in a spread of information or mathematical convolution
of the source term across that interval of time. The resulting
convolution will be evident in the final results in the following.
We note that this effect also limits the angular range of χ and
therefore the extent of the spherical cap.

The value of ∆rmax at sea level is approximately equal to
0.24 m for a 1-MeV primary electron. The source region (de-
fined to start at the radial distance where the radiation can es-
cape to the observer) for EMP lies beyond the radial distance
of ∼1 km from the burst point for low-altitude bursts. Thus, the
inequality, (∆r)/(r′) � 1, is readily satisfied. Using these val-
ues, we also find that the maximum value of the polar angle as
illustrated in Fig. 1 is θm ≈ 1.25◦, a value that is much less than
the cone angle θs for synchrotron emission for a 1-MeV primary
electron (θs ∼ 20◦). Because the angle ψ (see Fig. 1) is approx-
imately equal to θm , this result demonstrates that we are justi-
fied in assuming that the radiation is forward directed and that
the radiating particles are moving primarily in the radial direc-
tion. We note that these same conditions apply for high-altitude
bursts.

Combining (22)–(25), integrating over τ ′ from 0 to
(1−β)/(νE ) and r′ from 0 to R, and incorporating the effect of
absorption due to the background conductivity created by the
secondary electrons (as discussed previously), the total radiated
field due to primary electrons (e → −e, and Ω′ → −Ω′) can be

written

Eφ(r, τ) = − 2π

Rc
ev0Ω′

∫ R

0

dr′r′e
− 2π

c

∫ r

r ′
dr ′′σ(r ′′,τ )

·
∫ τs

0

dτ ′np(r′,τ − τ ′) cos Ω′τ ′sinθ (26)

Eθ (r, τ) =
2π

Rc
ev0Ω′

∫ R

0

dr′r′e
− 2π

c

∫ r

r ′
dr ′′σ(r ′′,τ )

·
∫ τs

0

dτ ′np(r′,τ − τ ′) sin Ω′τ ′sinθcosθ (27)

where τs = (1−β)/(νE ). Equations (26) and (27) can be sim-
plified by writing

Ω′ cos Ω′τ ′ =
d

dτ ′ sin Ω′τ ′, Ω′ sin Ω′τ ′ = − d

dτ ′ cos Ω′τ ′,

integrating by parts and substituting

d

dτ ′np(r′, τ − τ ′) = − Fγ

(1 − β)λc
.

The result is

Eφ(r, τ) =
2π

Rc

ev0

λc

∫ R

0

dr′r′e
− 2π

c

∫ r

r ′
dr ′′σ(r ′′,τ )

·
∫ τs

0

dτ ′

(1 − β)
Fγ (r′, τ − τ ′) sin Ω′τ ′ sin θ (28)

Eθ (r, τ) =
2π

Rc

ev0

λc

∫ R

0

dr′r′e
− 2π

c

∫ r

r ′
dr ′′σ(r ′′,τ )

·
∫ τs

0

dτ ′

(1 − β)
Fγ (r′, τ − τ ′) cos Ω′τ ′ sin θ cos θ.

(29)

Equation (28) is identical to (12) and (17) of the previous
section for the φ-component of the radiated electric field. This
component is associated strictly with the acceleration of the
Compton electrons by the geomagnetic field. The θ-component
arises from both the acceleration and the asymmetry introduced
by the geomagnetic field in the changing Compton current. An
additional term needs to be added to (29) to accommodate this
effect.

As noted previously the Liénard–Wichert potentials account
for radiation produced by accelerating charges. In the absence
of an accelerating force such as an external magnetic field, the
temporally changing Compton current would lie along the ra-
dial direction and would produce zero net radiation for a spher-
ical explosion. In this case, the z-component of the Compton
current separately produces a radiated field in the θ-direction
that is exactly canceled by the contribution from the radial cur-
rent in the plane perpendicular to the magnetic field, i.e., the
ρ-direction (see Fig. 2). In the particle approach, it turns out
that the ρ-component is equivalent [after integration by parts;
see (26)–(29)] to radiation resulting from the change in cur-
rent associated with the production of Compton electrons cou-
pled to a rotation of the current (introduces the phase term
cos Ωt′) in the presence of the magnetic field. This component
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Fig. 2. Asymmetry in Compton current introduced by geomagnetic field. In
the absence of an accelerating force such as an external magnetic field, the
temporally changing Compton current would lie along the radial direction (as
shown in red) and would produce zero net radiation for a spherical explosion.
In this case, the z-component of the Compton current produces a radiated field
in the θ-direction that is exactly canceled by the contribution from the radial
current in the ρ-direction. In the particle approach, it turns out that the ρ-
component is equivalent [after integration by parts; see (26)–(29)] to radiation
resulting from the change in current associated with the production of Compton
electrons coupled to a rotation of the current (introduces the phase term cos Ωt′)
in the presence of the magnetic field. This component leads to a corresponding
contribution to the radiation in the θ-direction given by (29). To obtain the total
(net) radiation in the θ-direction, we must also include the changing current in
the z-direction due to the production of Compton electrons just as we would
in the case of no magnetic field. This term is not accounted for by the particle
approach because there is no acceleration in the direction of the magnetic field.
Ultimately, one can think of the θ-component of the radiated electric field as
resulting from the asymmetry introduced by the magnetic field in the production
of Compton electrons.

leads to a corresponding contribution to the radiation in the
θ-direction given by (29). To obtain the total (net) radiation
in the θ-direction, we must also include the changing current
in the z-direction due to the production of Compton electrons
just as we would in the case of no magnetic field. This term
is not accounted for by the particle approach because there
is no acceleration in the direction of the magnetic field. Ulti-
mately, one can think of the θ-component of the radiated elec-
tric field as resulting from the asymmetry introduced by the
magnetic field in the production of Compton electrons while
the true synchrotron acceleration component (as we are accus-
tomed to viewing it for an individual electron) is reflected in the
φ-component. We should not lose sight of the fact however that
it is the particle acceleration caused by the magnetic field that
produces the ρ-component of the radiation and that this com-
ponent happens to be equivalent to radiation resulting from the
change in current associated with the production of Compton
electrons.

The z-contribution to the radiation field can be derived from
(9) and (11) and (17) of the previous section. The final result for
the total radiated field in the θ-direction is

Eθ (r, τ) =
2π

Rc

ev0

λc

∫ R

0

dr′r′e
− 2π

c

∫ r

r ′
dr ′′σ(r ′′,τ )

·
∫ τs

0

dτ ′

(1 − β)
Fγ (r′, τ − τ ′)(cos Ω′τ ′ − 1) sin θ cos θ (30)

The results, (28) and (30), are identical to (11), (12), and
(17). We note that when Ω′ = 0 the radiated fields are zero
as required, i.e., no net radiation is produced by a spherically
symmetric current system.

III. DISCUSSION

We have shown that under the same limits and approxima-
tions, the EMP produced by a nuclear explosion can be derived
either from a solution of Maxwell’s equations coupled to a
fluid treatment of primary and secondary electrons or from the
Liénard–Wiechert potentials coupled to a particle representa-
tion for the primary electrons. In order to achieve agreement
between the two approaches, it is essential to count the number
of emitting particles correctly and to include only those that
emit coherently within a time span equal to the lifetime of the
particles and only those whose radiation arrives at the detector
at the same time. The latter constraints define an emitting vol-
ume (equivalent to a total number of radiating particles) that
is consistent with the high-frequency approximation discussed
in Section II. In addition, the sum of the synchrotron-radiated
fields from these particles yields the same radiation at a remote
detector as that computed directly from Maxwell’s equations
and the corresponding macroscopic particle currents.

The particle treatment we utilized in this paper only incor-
porates synchrotron radiation and does not include radiation
resulting from frictional losses (Bremsstrahlung radiation) or
acceleration by the electric field. This analysis is consistent
with the assumptions that were made in the treatment based on
the fluid/Maxwell equations. In a rigorous particle treatment of
the entire nuclear EMP problem the secondary electron acceler-
ation due to the electric field would have to be incorporated into
the Liénard–Wiechert potentials. Instead, the secondary elec-
tron radiation is treated in Section III as resulting from a macro-
scopic conduction current (proportional to the electric field) that
in effect “absorbs” the synchrotron radiation produced by the
Compton electrons. The more rigorous approach will be left for
future work and should be a straightforward extension of the
methodology described in this manuscript.

We emphasize that we have only addressed the comparison
between fluid/Maxwell equations versus particle/synchrotron
radiation approaches and that the validity of the results rests
entirely on the accuracy of the high-frequency approximation.
The latter issue has been analyzed in more detail in previous
reports [4], [8], [11]. The technique adopted by Longmire [7]
of separating the fields into ingoing and outgoing components
also provides a physically transparent confirmation of the
high-frequency approximation. Studies of the EMP produced in
a two-dimensional geometry or with corrections for transverse
gradients along multiple rays from the source to the observer
have been performed [7], [12]–[14] and resulted in further
confirmation of the dominance at early times (<several
microseconds) of the results obtained with the high-frequency
approximation.
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Although further work is needed, particularly in comparing
with available data, our ability to predict the EMP from a nuclear
explosion is well established and the basic physical principles
are well known and modeled. Any new numerical treatments
(including those based on Monte Carlo calculations of syn-
chrotron radiation) should be judged on the basis of their abil-
ity to reproduce existing model results. Finally, from a purely
heuristic perspective, it is important to note that the equivalence
obtained in this paper between the two approaches (sum over
individual particle emissions versus a coherent representation
by means of macroscopic currents) has relevance to all calcu-
lations of coherent electromagnetic radiation from a particle
source.
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